AI-Fe-U (Aluminum-Iron-Uranium)

V. Raghavan

The previous review of this system by [1992Rag] presented a liquidus projection, two isothermal sections at 1000 and 650 °C, and a reaction scheme for the Fe₂U-U-Al₂U region. [1994Gon] investigated the U-lean compositions of the general formula $U(Fe_{12-x}Al_x)$. Recently, [2005Gon] studied the entire composition range and determined an isothermal section at 850 °C, which depicts seven ternary phases.

Binary Systems

The Al-Fe phase diagram [1993Kat] depicts four intermediate phases: the high-temperature phase ε , FeAl₂ (triclinic), Fe₂Al₅ (orthorhombic), and FeAl₃ (monoclinic). The Fe-based body-centered cubic (bcc) solid solution α dissolves more than 50 at.% Al and exists also as ordered forms of the CsCl-type (*B*2) and BiF₃-type (*D*0₃). The Al-U phase diagram [Massalski2] depicts three intermediate phases: UAl₂ (*C*15, MgCu₂-type cubic), UAl₃ (*L*1₂, AuCu₃type cubic), and U_{0.9}Al₄ (*D*1_b-type orthorhombic). The Fe-U phase diagram [1993Oka] has two line compounds: Fe₂U (*C*15, MgCu₂-type cubic) and FeU₆ (*D*2_c, MnU₆-type tetragonal).

Ternary Phases

The crystal structure data on the seven ternary phases of this system are listed in Table 1 [2005Gon]. UFe₂Al₁₀ (τ_1)

has the YbFe₂Al₁₀-type orthorhombic structure [2004Noe]. U₂Fe_{3.6}Al_{13.4} (τ_2) is Th₂Ni₁₇-type hexagonal. U₃Fe_{4+x}Al_{12-x} (τ_4) (0 < x < 0.5) is a Gd₃Ru₄Al₁₂-type hexagonal compound. UFe_xAl_{12-x} (τ_5) (3 < x < 7) is ThMn₁₂-type tetragonal. U₂Fe_{17-x}Al_x (τ_6) (8.5 < x < 10.3) is Th₂Zn₁₇-type rhombohedral. UFe_{1+x}Al_{1-x} (τ_7) (~ -0.05 < x < ~0.36) is a *C*14, MgZn₂-type hexagonal compound at 850 °C. On annealing below 600 °C, it is stable as a ZrNiAl-type hexagonal phase. U₂Fe₁₂Al₅ (τ_8) is Th₂Ni₁₇-type hexagonal compound. The phases numbered 3 and 9 by [2005Gon] are extensions of two binary phases into the ternary region. UAl₂, numbered 3 by [2005Gon], dissolves up to ~12 at.% Fe at constant U content. UFe₂, numbered 9 by [2005Gon], dissolves up to ~8.3 at.% Al at constant U content.

Ternary Isothermal Section

[2005Gon] prepared 45 ternary alloy compositions by arc-melting or induction-melting under Ar atmosphere. The purity of the starting materials was not given. The samples were annealed at 850 °C for 10 days and quenched to room temperature. The phase equilibria were studied with x-ray powder diffraction and scanning electron microscopy. The compositions of the phases were determined by the energy dispersive x-ray spectroscopy. The isothermal section constructed by [2005Gon] is redrawn in Fig. 1 to agree with the accepted binary data. The composition ranges of the phases

Phase	Composition, at.%	Pearson symbol	Space group	Prototype	Lattice parameter, nm
$UFe_2Al_{10}(\tau_1)$	76.9 Al	oC?	Cmcm	YbFe ₂ Al ₁₀	a = 0.89146
	15.4 Fe				b = 1.01986
	7.7 U				c = 0.90114
$U_2Fe_{3.6}Al_{13.4}(\tau_2)$	70.5 Al	hP38	P6 ₃ /mmc	Th ₂ Ni ₁₇	a = 0.88589
	18.9 Fe				c = 0.89824
	10.5 U				
$U_3Fe_{4+x}Al_{12-x}(\tau_4)$	63.2-60.5 Al	hP?	P6 ₃ /mmc	Gd ₃ Ru ₄ Al ₁₂	a = 0.87451
	21.0-23.7 Fe				c = 0.92588(a)
	15.8 U				
$\text{UFe}_{x}\text{Al}_{12-x}(\tau_{5})$	69.2-38.5 Al	<i>tI</i> 26	I4/mmm	ThMn ₁₂	a = 0.8740
	23.1-53.8 Fe				c = 0.5036(b)
	7.7 U				
$U_2 Fe_{17-x} Al_x(\tau_6)$	44.7-54.2 Al	hR19	R3m	Th ₂ Zn ₁₇	a = 0.8753
	44.7-35.3 Fe				c = 1.2658(c)
	10.5 U				
$UFe_{1+x}Al_{1-x}(\tau_7)$	35.0-21.3 Al	hP12	P6 ₃ /mmc	MgZn ₂	a = 0.518
	31.7-45.3 Fe				c = 0.808(d)
$U_2Fe_{12}Al_5(\tau_8)$	26.3 Al	hP38	P6 ₃ /mmc	Th ₂ Ni ₁₇	a = 0.8563
	63.2 Fe				c = 0.8438
	10.5 U				
Lattice parameters at .	x = (a) 0, (b) 4, (c) 9, and (d)) 0.25			

 Table 1
 Al-Fe-U crystal structure and lattice parameter data

Fig. 1 Al-Fe-U isothermal section at 850 °C [2005Gon]

shown are those from the listed values. In a few cases, the listed values are significantly different from those in the figure drawn by [2005Gon]. All the ternary phases occur at or below ~33.3 at.% U. In all the compounds with a range of homogeneity, the mutual substitution is between Fe and Al at constant U content. Data are lacking on the extension of the bcc/B2 boundary of the Fe-Al α -phase into the ternary region.

References

1992Rag: V. Raghavan, The Al-Fe-U (Aluminum-Iron-Uranium) System, *Phase Diagrams of Ternary Iron Alloys, Part 6*, Indian Institute of Metals, Calcutta, India, 1992, p 196-203

1993Kat: U.R. Kattner and B.P. Burton, Al-Fe (Aluminum-Iron),

Phase Diagrams of Binary Iron Alloys, H. Okamoto, Ed., ASM International, 1993, p 12-28

- **1993Oka:** H. Okamoto, Fe-U (Iron-Uranium), *Phase Diagrams of Binary Iron Alloys*, H. Okamoto, Ed., ASM International, 1993, p 429-432
- **1994Gon:** A.P. Goncalves, M. Almeida, C.T. Walker, J. Ray, and J.C. Spirlet, Phase Relations and Single Crystal Growth of U-Fe-M (M = Al, Si) Compounds with ThMn₁₂ Type Structure, *Mater. Lett.*, 1994, **19**(1-2), p 13-16
- **2004Noe:** H. Noel, A.P. Goncalves and J.C. Waerenborgh, Characterization of Ternary UFe₂Al₁₀, *Intermetallics*, 2004, **12**, p 189-194
- **2005Gon:** A.P. Goncalves and H. Noel, Isothermal Section at 850 °C of the U-Fe-Al Ternary System, *Intermetallics*, 2005, **13**, p 580-585